Step by step design of an interior-point solver in self-dual conic optimization
نویسنده
چکیده
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
منابع مشابه
A New Infeasible Interior-Point Algorithm with Full Nesterov-Todd Step for Semi-Definite Optimization
We present a new full Nesterov and Todd step infeasible interior-point algorithm for semi-definite optimization. The algorithm decreases the duality gap and the feasibility residuals at the same rate. In the algorithm, we construct strictly feasible iterates for a sequence of perturbations of the given problem and its dual problem. Every main iteration of the algorithm consists of a feasibili...
متن کاملFull Nesterov-Todd Step Primal-Dual Interior-Point Methods for Second-Order Cone Optimization∗
After a brief introduction to Jordan algebras, we present a primal-dual interior-point algorithm for second-order conic optimization that uses full Nesterov-Todd-steps; no line searches are required. The number of iterations of the algorithm is O( √ N log(N/ε), where N stands for the number of second-order cones in the problem formulation and ε is the desired accuracy. The bound coincides with ...
متن کاملLocal Quadratic Convergence of Polynomial-Time Interior-Point Methods for Conic Optimization Problems
In this paper, we establish a local quadratic convergence of polynomial-time interior-point methods for general conic optimization problems. The main structural property used in our analysis is the logarithmic homogeneity of self-concordant barrier functions. We propose new path-following predictor-corrector schemes which work only in the dual space. They are based on an easily computable gradi...
متن کاملLocal Superlinear Convergence of Polynomial-Time Interior-Point Methods for Hyperbolicity Cone Optimization Problems
In this paper, we establish the local superlinear convergence property of some polynomialtime interior-point methods for an important family of conic optimization problems. The main structural property used in our analysis is the logarithmic homogeneity of self-concordant barrier function, which must have negative curvature. We propose a new path-following predictor-corrector scheme, which work...
متن کاملA Polynomial-Time Interior-Point Method for Conic Optimization, With Inexact Barrier Evaluations
We consider a primal-dual short-step interior-point method for conic convex optimization problems for which exact evaluation of the gradient and Hessian of the primal and dual barrier functions is either impossible or prohibitively expensive. As our main contribution, we show that if approximate gradients and Hessians of the primal barrier function can be computed, and the relative errors in su...
متن کامل